The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics.

نویسندگان

  • Stephen LaConte
  • Jon Anderson
  • Suraj Muley
  • James Ashe
  • Sally Frutiger
  • Kelly Rehm
  • Lars Kai Hansen
  • Essa Yacoub
  • Xiaoping Hu
  • David Rottenberg
  • Stephen Strother
چکیده

This work proposes an alternative to simulation-based receiver operating characteristic (ROC) analysis for assessment of fMRI data analysis methodologies. Specifically, we apply the rapidly developing nonparametric prediction, activation, influence, and reproducibility resampling (NPAIRS) framework to obtain cross-validation-based model performance estimates of prediction accuracy and global reproducibility for various degrees of model complexity. We rely on the concept of an analysis chain meta-model in which all parameters of the preprocessing steps along with the final statistical model are treated as estimated model parameters. Our ROC analog, then, consists of plotting prediction vs. reproducibility results as curves of model complexity for competing meta-models. Two theoretical underpinnings are crucial to utilizing this new validation technique. First, we explore the relationship between global signal-to-noise and our reproducibility estimates as derived previously. Second, we submit our model complexity curves in the prediction versus reproducibility space as reflecting classic bias-variance tradeoffs. Among the particular analysis chains considered, we found little impact in performance metrics with alignment, some benefit with temporal detrending, and greatest improvement with spatial smoothing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machines for temporal classification of block design fMRI data.

This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics...

متن کامل

Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.

Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility ...

متن کامل

The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework.

We introduce a data-analysis framework and performance metrics for evaluating and optimizing the interaction between activation tasks, experimental designs, and the methodological choices and tools for data acquisition, preprocessing, data analysis, and extraction of statistical parametric maps (SPMs). Our NPAIRS (nonparametric prediction, activation, influence, and reproducibility resampling) ...

متن کامل

Analysis of BOLD fMRI Signal Preprocessing Pipeline on Different Datasets while Reducing False Positive Rates

The technology of functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygen Level Dependent (BOLD) signal has been widely used in clinical treatments and brain function researches. The BOLD signal has to be preprocessed before being analyzed using either functional connectivity measurements or statistical methods. Current researches show that data preprocessing steps may influence the ...

متن کامل

Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics.

This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2003